24 research outputs found

    Facial motion perception in autism spectrum disorder and neurotypical controls

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and was awarded by Brunel University LondonFacial motion provides an abundance of information necessary for mediating social communication. Emotional expressions, head rotations and eye-gaze patterns allow us to extract categorical and qualitative information from others (Blake & Shiffrar, 2007). Autism Spectrum Disorder (ASD) is a neurodevelopmental condition characterised by a severe impairment in social cognition. One of the causes may be related to a fundamental deficit in perceiving human movement (Herrington et al., (2007). This hypothesis was investigated more closely within the current thesis. In neurotypical controls, the visual processing of facial motion was analysed via EEG alpha waves. Participants were tested on their ability to discriminate between successive animations (exhibiting rigid and nonrigid motion). The appearance of the stimuli remained constant over trials, meaning decisions were based solely on differential movement patterns. The parieto-occipital region was specifically selective to upright facial motion while the occipital cortex responded similarly to natural and manipulated faces. Over both regions, a distinct pattern of activity in response to upright faces was characterised by a transient decrease and subsequent increase in neural processing (Girges et al., 2014). These results were further supported by an fMRI study which showed sensitivity of the superior temporal sulcus (STS) to perceived facial movements relative to inanimate and animate stimuli. The ability to process information from dynamic faces was assessed in ASD. Participants were asked to recognise different sequences, unfamiliar identities and genders from facial motion captures. Stimuli were presented upright and inverted in order to assess configural processing. Relative to the controls, participants with ASD were significantly impaired on all three tasks and failed to show an inversion effect (O'Brien et al., 2014). Functional neuroimaging revealed atypical activities in the visual cortex, STS and fronto-parietal regions thought to contain mirror neurons in participants with ASD. These results point to a deficit in the visual processing of facial motion, which in turn may partly cause social communicative impairments in ASD

    Neural correlates of facial motion perception

    Get PDF
    Several neuroimaging studies have revealed that the superior temporal sulcus (STS) is highly implicated in the processing of facial motion. A limitation of these investigations, however, is that many of them utilize unnatural stimuli (e.g., morphed videos) or those which contain many confounding spatial cues. As a result, the underlying mechanisms may not be fully engaged during such perception. The aim of the current study was to build upon the existing literature by implementing highly detailed and accurate models of facial movement. Accordingly, neurologically healthy participants viewed simultaneous sequences of rigid and nonrigid motion that was retargeted onto a standard computer generated imagery face model. Their task was to discriminate between different facial motion videos in a two-alternative forced choice paradigm. Presentations varied between upright and inverted orientations. In corroboration with previous data, the perception of natural facial motion strongly activated a portion of the posterior STS. The analysis also revealed engagement of the lingual gyrus, fusiform gyrus, precentral gyrus, and cerebellum. These findings therefore suggest that the processing of dynamic facial information is supported by a network of visuomotor substrates

    Validation of a comorbidity questionnaire in patients with neurological disorders

    Get PDF
    Rational: Several tools exist to assess comorbidities in neurological disorders, the most widely used being the Charlson Comorbidity Index (CCI), but it has several limitations. The Comorbidity and General Health Questionnaire (CGHQ) is a newly designed tool, which includes additional comorbidities associated with health-related quality of life (HR-QOL) and outcomes in neurological disorders. Aims and objectives: To assess the feasibility and validity of the CGHQ in patients with neurological disease. Method: Two hundred patients attending a general neurological clinic were invited to complete the CGHQ along with the EQ-5D-5L questionnaire. The CCI was simultaneously completed by the assessor. CGHQ comorbidity scores were compared with CCI, symptom burden and EQ-5D-5L scores. Results: The CGHQ captured 22 additional comorbidities not included on the CCI and more comorbidities were endorsed on the CGHQ. The CGHQ correlated weakly to moderately with CCI comorbidity scores. While both the CGHQ and CCI correlated negatively with the EQ-5D-5L Visual Analogue Scale, only the CGHQ correlated negatively with the EQ-5D-5L summary index. The CGHQ but not the CCI correlated strongly and positively with symptom burden scores. Conclusion: The CGHQ allows a more comprehensive assessment of comorbidities than the CCI and better correlates with patients’ overall symptom burden and HR-QOL in neurological patients

    An Evaluation of KELVIN, an Artificial Intelligence Platform, as an Objective Assessment of the MDS UPDRS Part III

    Get PDF
    BACKGROUND: Parkinson's disease severity is typically measured using the Movement Disorder Society Unified Parkinson's disease rating scale (MDS-UPDRS). While training for this scale exists, users may vary in how they score a patient with the consequence of intra-rater and inter-rater variability. OBJECTIVE: In this study we explored the consistency of an artificial intelligence platform compared with traditional clinical scoring in the assessment of motor severity in PD. METHODS: Twenty-two PD patients underwent simultaneous MDS-UPDRS scoring by two experienced MDS-UPDRS raters and the two sets of accompanying video footage were also scored by an artificial intelligence video analysis platform known as KELVIN. RESULTS: KELVIN was able to produce a summary score for 7 MDS-UPDRS part 3 items with good inter-rater reliability (Intraclass Correlation Coefficient (ICC) 0.80 in the OFF-medication state, ICC 0.73 in the ON-medication state). Clinician scores had exceptionally high levels of inter-rater reliability in both the OFF (0.99) and ON (0.94) medication conditions (possibly reflecting the highly experienced team). There was an ICC of 0.84 in the OFF-medication state and 0.31 in the ON-medication state between the mean Clinician and mean Kelvin scores for the equivalent 7 motor items, possibly due to dyskinesia impacting on the KELVIN scores. CONCLUSION: We conclude that KELVIN may prove useful in the capture and scoring of multiple items of MDS-UPDRS part 3 with levels of consistency not far short of that achieved by experienced MDS-UPDRS clinical raters, and is worthy of further investigation

    Long-term success of low-frequency subthalamic nucleus stimulation for Parkinson's disease depends on tremor severity and symptom duration

    Get PDF
    Patients with Parkinson's disease can develop axial symptoms, including speech, gait and balance difficulties. Chronic high-frequency (>100 Hz) deep brain stimulation can contribute to these impairments while low-frequency stimulation (<100 Hz) may improve symptoms but only in some individuals. Factors predicting which patients benefit from low-frequency stimulation in the long term remain unclear. This study aims to confirm that low-frequency stimulation improves axial symptoms, and to go further to also explore which factors predict the durability of its effects. We recruited patients who developed axial motor symptoms while using high-frequency stimulation and objectively assessed the short-term impact of low-frequency stimulation on axial symptoms, other aspects of motor function and quality of life. A retrospective chart review was then conducted on a larger cohort to identify which patient characteristics were associated with not only the need to trial low-frequency stimulation, but also those which predicted its sustained use. Among 20 prospective patients, low-frequency stimulation objectively improved mean motor and axial symptom severity and quality of life in the short term. Among a retrospective cohort of 168 patients, those with less severe tremor and those in whom axial symptoms had emerged sooner after subthalamic nucleus deep brain stimulation were more likely to be switched to and remain on long-term low-frequency stimulation. These data suggest that low-frequency stimulation results in objective mean improvements in overall motor function and axial symptoms among a group of patients, while individual patient characteristics can predict sustained long-term benefits. Longer follow-up in the context of a larger, controlled, double-blinded study would be required to provide definitive evidence of the role of low-frequency deep brain stimulation

    Impaired perception of facial motion in autism spectrum disorder

    Get PDF
    Copyright: © 2014 O’Brien et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.This article has been made available through the Brunel Open Access Publishing Fund.Facial motion is a special type of biological motion that transmits cues for socio-emotional communication and enables the discrimination of properties such as gender and identity. We used animated average faces to examine the ability of adults with autism spectrum disorders (ASD) to perceive facial motion. Participants completed increasingly difficult tasks involving the discrimination of (1) sequences of facial motion, (2) the identity of individuals based on their facial motion and (3) the gender of individuals. Stimuli were presented in both upright and upside-down orientations to test for the difference in inversion effects often found when comparing ASD with controls in face perception. The ASD group’s performance was impaired relative to the control group in all three tasks and unlike the control group, the individuals with ASD failed to show an inversion effect. These results point to a deficit in facial biological motion processing in people with autism, which we suggest is linked to deficits in lower level motion processing we have previously reported

    Combining biomarkers for prognostic modelling of Parkinson's disease

    Get PDF
    BACKGROUND: Patients with Parkinson's disease (PD) have variable rates of progression. More accurate prediction of progression could improve selection for clinical trials. Although some variance in clinical progression can be predicted by age at onset and phenotype, we hypothesise that this can be further improved by blood biomarkers. OBJECTIVE: To determine if blood biomarkers (serum neurofilament light (NfL) and genetic status (glucocerebrosidase, GBA and apolipoprotein E (APOE))) are useful in addition to clinical measures for prognostic modelling in PD. METHODS: We evaluated the relationship between serum NfL and baseline and longitudinal clinical measures as well as patients' genetic (GBA and APOE) status. We classified patients as having a favourable or an unfavourable outcome based on a previously validated model, and explored how blood biomarkers compared with clinical variables in distinguishing prognostic phenotypes . RESULTS: 291 patients were assessed in this study. Baseline serum NfL was associated with baseline cognitive status. Nfl predicted a shorter time to dementia, postural instability and death (dementia-HR 2.64; postural instability-HR 1.32; mortality-HR 1.89) whereas APOEe4 status was associated with progression to dementia (dementia-HR 3.12, 95% CI 1.63 to 6.00). NfL levels and genetic variables predicted unfavourable progression to a similar extent as clinical predictors. The combination of clinical, NfL and genetic data produced a stronger prediction of unfavourable outcomes compared with age and gender (area under the curve: 0.74-age/gender vs 0.84-ALL p=0.0103). CONCLUSIONS: Clinical trials of disease-modifying therapies might usefully stratify patients using clinical, genetic and NfL status at the time of recruitment

    Automated PDF highlighting to support faster curation of literature for Parkinson's and Alzheimer's disease

    Get PDF
    Neurodegenerative disorders such as Parkinson’s and Alzheimer’s disease are devastating and costly illnesses, a source of major global burden. In order to provide successful interventions for patients and reduce costs, both causes and pathological processes need to be understood. The ApiNATOMY project aims to contribute to our understanding of neurodegenerative disorders by manually curating and abstracting data from the vast body of literature amassed on these illnesses. As curation is labour-intensive, we aimed to speed up the process by automatically highlighting those parts of the PDF document of primary importance to the curator. Using techniques similar to those of summarisation, we developed an algorithm that relies on linguistic, semantic and spatial features. Employing this algorithm on a test set manually corrected for tool imprecision, we achieved a macro F1-measure of 0.51, which is an increase of 132% compared to the best bag-of-words baseline model. A user based evaluation was also conducted to assess the usefulness of the methodology on 40 unseen publications, which reveals that in 85% of cases all highlighted sentences are relevant to the curation task and in about 65% of the cases, the highlights are sufficient to support the knowledge curation task without needing to consult the full text. In conclusion, we believe that these are promising results for a step in automating the recognition of curation-relevant sentences. Refining our approach to pre-digest papers will lead to faster processing and cost reduction in the curation process

    Event-related alpha suppression in response to facial motion

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.While biological motion refers to both face and body movements, little is known about the visual perception of facial motion. We therefore examined alpha wave suppression as a reduction in power is thought to reflect visual activity, in addition to attentional reorienting and memory processes. Nineteen neurologically healthy adults were tested on their ability to discriminate between successive facial motion captures. These animations exhibited both rigid and non-rigid facial motion, as well as speech expressions. The structural and surface appearance of these facial animations did not differ, thus participants decisions were based solely on differences in facial movements. Upright, orientation-inverted and luminance-inverted facial stimuli were compared. At occipital and parieto-occipital regions, upright facial motion evoked a transient increase in alpha which was then followed by a significant reduction. This finding is discussed in terms of neural efficiency, gating mechanisms and neural synchronization. Moreover, there was no difference in the amount of alpha suppression evoked by each facial stimulus at occipital regions, suggesting early visual processing remains unaffected by manipulation paradigms. However, upright facial motion evoked greater suppression at parieto-occipital sites, and did so in the shortest latency. Increased activity within this region may reflect higher attentional reorienting to natural facial motion but also involvement of areas associated with the visual control of body effectors. © 2014 Girges et al
    corecore